

Integrality: TUM & TD1

When can we obtain an integral soln to an LP?

- A matrix / vector is integral if all entries are integers.
- $P = \{x \in \mathbb{R}^n : Ax \geq b\}$ is integral if all its vertices are integral & $c \in \mathbb{R}^n$ is rational

Theorem: If P is bounded & integral, then we can in polynomial time obtain an integral soln to $\max\{c^T x : x \in P\}$

Proof: Use ellipsoid to obtain a (possibly fractional) soln to (outline) $\max\{c^T x : x \in P\}$, then add L.I. constraints until you reach a vt.

So when is a polyhedron P integral?

Defn: ① $A \in \mathbb{Z}^{m \times n}$ is **unimodular** if $\det(A) \in \{-1, +1\}$

② $A \in \mathbb{Z}^{m \times n}$ is **totally unimodular** if every square submatrix B of A has $\det(B) \in \{-1, 0, 1\}$

(thus if A is TUM then $A \in \{-1, 0, +1\}^{m \times n}$)

Eg: $A = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$ is TUM

$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$ is not TUM, $\det(A) = 2$

Theorem: Let A be TUM & $b \in \mathbb{Z}^m$. Then $P = \{x : Ax \geq b\}$ is integral

Proof: Let x be a vertex, then there are n L.I. constraints tight at x , say $a_1 x^* = b_1, \dots, a_n x^* = b_n$.

Let $B = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$, $b' = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$

Then $x^* = B^{-1} b'$

By Cramer rule, $x_i^* = \frac{\det B_i}{\det B}$

where $B_i = \begin{bmatrix} B_1 & \dots & B_{i-1} & B' & B_{i+1} & \dots & B_n \end{bmatrix}$

now $\det B_i \in \mathbb{Z}$, $\det(B) \in \{-1, 0, 1\}$ (since rows are gms) hence x^* is integral.

(or directly $B^{-1} = \frac{C^T}{\det(B)}$, all cofactors are integral, $b \in \mathbb{Z}^m$, $\det(B) \in \{-1, 0, 1\}$)

Thus if TUM, $b \in \mathbb{Z}^m$, $c \in \mathbb{R}^n$ is rational we find an integral optimal soln. efficiently.

Claim: If $A \in \mathbb{Z}^{m \times n}$ TUM, then so are:

① $-A$ can show that $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$ is TUM

② A^T

③ $[A \ e_i]$ & $\begin{bmatrix} A \\ e_j \end{bmatrix}$

④ $[A \ 0^n]$ & $\begin{bmatrix} A \\ 0^n \end{bmatrix}$

⑤ $[A \ A_j]$ & $\begin{bmatrix} A \\ a_j \end{bmatrix}$

⑥ $[A \ -A_j]$ & $\begin{bmatrix} A \\ -a_j \end{bmatrix}$ (or in general, multiplying a row by -1)

(prove yourself)

Corollary: If A is TUM & $b \in \mathbb{Z}^m$, $c \in \mathbb{Z}^n$, then both polyhedra $P = \{x : Ax \geq b\}$ & $Q = \{y : A^T y = c, y \geq 0\}$ are integral.

Corollary: If A is TUM & a, b, c, d are integral vectors, then polyhedron $P = \{x : c \leq x \leq d, a \leq Ax \leq b\}$ is integral.

So how do you show a matrix A is TUM?

Theorem: Let $A \in \mathbb{R}^{m \times n}$. Then A is TUM iff any set S of rows can be partitioned into sets S_1 & S_2 s.t.

$$\sum_{i \in S_1} a_{i1} = \sum_{i \in S_2} a_{i1} \in \{-1, 0, +1\}^m$$

(proof skipped)

APPLICATIONS:

1. Given a digraph G , consider the $|V| \times |E|$ node-arc incidence matrix: $M_{v,e} = +1$ if $e \in S^+(v)$

$= -1$ if $e \in S^-(v)$

$= 0$ o.w.

E.g.

$e_1 \rightarrow v$

$e_2 \rightarrow w$

$e_3 \rightarrow v$

$e_4 \rightarrow w$

$e_5 \rightarrow u$

$e_6 \rightarrow u$

$e_7 \rightarrow v$

$e_8 \rightarrow w$

$e_9 \rightarrow v$

$e_{10} \rightarrow w$

$e_{11} \rightarrow u$

$e_{12} \rightarrow v$

$e_{13} \rightarrow w$

$e_{14} \rightarrow u$

$e_{15} \rightarrow v$

$e_{16} \rightarrow w$

$e_{17} \rightarrow u$

$e_{18} \rightarrow v$

$e_{19} \rightarrow w$

$e_{20} \rightarrow u$

$e_{21} \rightarrow v$

$e_{22} \rightarrow w$

$e_{23} \rightarrow u$

$e_{24} \rightarrow v$

$e_{25} \rightarrow w$

$e_{26} \rightarrow u$

$e_{27} \rightarrow v$

$e_{28} \rightarrow w$

$e_{29} \rightarrow u$

$e_{30} \rightarrow v$

$e_{31} \rightarrow w$

$e_{32} \rightarrow u$

$e_{33} \rightarrow v$

$e_{34} \rightarrow w$

$e_{35} \rightarrow u$

$e_{36} \rightarrow v$

$e_{37} \rightarrow w$

$e_{38} \rightarrow u$

$e_{39} \rightarrow v$

$e_{40} \rightarrow w$

$e_{41} \rightarrow u$

$e_{42} \rightarrow v$

$e_{43} \rightarrow w$

$e_{44} \rightarrow u$

$e_{45} \rightarrow v$

$e_{46} \rightarrow w$

$e_{47} \rightarrow u$

$e_{48} \rightarrow v$

$e_{49} \rightarrow w$

$e_{50} \rightarrow u$

$e_{51} \rightarrow v$

$e_{52} \rightarrow w$

$e_{53} \rightarrow u$

$e_{54} \rightarrow v$

$e_{55} \rightarrow w$

$e_{56} \rightarrow u$

$e_{57} \rightarrow v$

$e_{58} \rightarrow w$

$e_{59} \rightarrow u$

$e_{60} \rightarrow v$

$e_{61} \rightarrow w$

$e_{62} \rightarrow u$

$e_{63} \rightarrow v$

$e_{64} \rightarrow w$

$e_{65} \rightarrow u$

$e_{66} \rightarrow v$

$e_{67} \rightarrow w$

$e_{68} \rightarrow u$

$e_{69} \rightarrow v$

$e_{70} \rightarrow w$

$e_{71} \rightarrow u$

$e_{72} \rightarrow v$

$e_{73} \rightarrow w$

$e_{74} \rightarrow u$

$e_{75} \rightarrow v$

$e_{76} \rightarrow w$

$e_{77} \rightarrow u$

$e_{78} \rightarrow v$

$e_{79} \rightarrow w$

$e_{80} \rightarrow u$

$e_{81} \rightarrow v$

$e_{82} \rightarrow w$

$e_{83} \rightarrow u$

$e_{84} \rightarrow v$

$e_{85} \rightarrow w$

$e_{86} \rightarrow u$

$e_{87} \rightarrow v$

$e_{88} \rightarrow w$

$e_{89} \rightarrow u$

$e_{90} \rightarrow v$

$e_{91} \rightarrow w$

$e_{92} \rightarrow u$

$e_{93} \rightarrow v$

$e_{94} \rightarrow w$

$e_{95} \rightarrow u$

$e_{96} \rightarrow v$

$e_{97} \rightarrow w$

$e_{98} \rightarrow u$